
Denoising Pipeline for Deep-Sky Astrophotography
David Regordosa

AstroPics Lab

Abstract

This work presents a specialized denoising pipeline developed for AstroPics Lab, a software platform for
advanced astrophotography post-processing. The system operates on paired noisy/clean 256×256 image tiles
derived from community-provided deep-sky datasets and is enhanced through physically motivated synthetic
noise modeling. A ResUNet architecture is trained using a multi-term loss that incorporates star-aware
weighting, structural similarity, brightness consistency in non-stellar regions, and regularization in high-
intensity zones. During inference, full-resolution images are processed using overlapping tile prediction with
Gaussian feathering to eliminate seams. The resulting method achieves high-fidelity denoising while preserving
the fine structure of celestial objects such as galaxies and emission or reflection regions, as well as maintaining
the integrity of stellar profiles.
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1. Introduction

Astrophotographic data presents unique challenges compared to natural images: faint signals, high dynamic range,
sensor-induced artifacts, and the requirement to preserve small-scale structures such as star fields and deep-sky
objects. Traditional denoising models trained on generic image datasets often oversmooth these features or introduce
distortions in high-intensity regions.

To address these limitations, we designed a domain-specific denoising module for AstroPics Lab, leveraging real
user-generated astrophotography data from the AstroAnoia community. Each contributor provided both processed
(clean) and lightly processed (noisy) captures, enabling the construction of a dataset of aligned noisy–clean patches
suitable for supervised learning. Tiles are extracted at 256×256 resolution to balance detail preservation and
computational efficiency.

A critical aspect of astrophotography denoising is the preservation of stars and the subtle structures of various
astronomical objects, including galaxies, star-forming regions, and faint diffuse light. To this end, the training
pipeline incorporates explicit star masks and custom losses that treat stellar and non-stellar regions differently.
Furthermore, synthetic noise composed of realistic astrophotographic degradations—such as chroma blotching,
banding, and Gaussian sensor noise—is injected during training to improve robustness under diverse imaging
conditions.

For inference, a dedicated overlapping-tile algorithm processes full-resolution images with Gaussian feathering to
avoid patch boundaries. This allows the model to operate seamlessly on images of arbitrary dimensions while
maintaining prediction consistency across the frame.

2. Methods

2.1 Dataset Construction
High-resolution astrophotography images were sourced from the AstroAnoia community. For each scene,
contributors supplied:



a noisy version produced with minimal or no denoising;
a clean version processed by the contributor.

All images were segmented into 256×256 non-overlapping tiles, generating a large corpus of paired examples suitable
for supervised denoising.

2.2 Synthetic Noise Augmentation
To increase generalization and simulate real-world noise profiles, the training pipeline introduces synthetic
perturbations on top of clean tiles. These perturbations include:

Random-variance Gaussian noise applied independently per pixel;
Chroma block noise, where low-resolution color fluctuations are upsampled to tile size, mimicking color
blotches after extreme stretching;
Banding artifacts (horizontal or vertical fixed-pattern variations), simulating sensor readout or calibration
issues;
Identity and low-noise variants, where the network is explicitly trained to leave already clean tiles
unchanged.

This augmentation strategy ensures that the model encounters a wide range of astrophotographic noise conditions,
improving robustness across different cameras, sensors, and acquisition pipelines.

2.3 Star Mask Generation
A luminance-based algorithm produces a soft star mask for every clean tile. The procedure is as follows:

Convert the RGB tile to grayscale luminance;
Apply a threshold to detect bright star cores;
Dilate the result to include immediate halos around stars;
Apply Gaussian blurring to create smooth, feathered transitions.

The resulting mask is stored as a single-channel float map in [0,1] and concatenated to the target RGB tile, forming a
4-channel ground truth:

ytrue = [cleanRGB, star_mask]

This representation enables the loss function to distinguish between stellar and non-stellar regions at training time.

2.4 Model Architecture
A tailored ResUNet architecture is employed for denoising. The network follows an encoder–bottleneck–decoder
structure with residual blocks:
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Figure 1. Schematic diagram of the ResUNet architecture used in AstroPics Lab for denoising.

Residual connections improve gradient flow and help the network preserve fine astronomical structures, while skip
connections allow the decoder to recover high-frequency details that might otherwise be lost in downsampling.

2.5 Loss Function
Training uses a composite loss tailored for astrophotography:

Star-weighted L1 loss: a pixel-wise L1 term with reduced weight in stellar regions, preventing deformation
of bright point sources;
SSIM loss: encourages structural similarity between prediction and target, preserving detail and contrast;
Brightness consistency loss (object regions): applies a luminance constraint only to non-stellar regions,
ensuring that deep-sky objects such as galaxies or emission regions are neither artificially darkened nor
brightened;
Total variation regularization (star regions): applied inside stellar regions to smooth artifacts and
reduce ringing around bright cores.

The combined loss can be expressed as:

Loss = (1 − β) · L1weighted + β · SSIM + γ · Brightness + δ · TV

2.6 Training Procedure
The model is trained on 256×256 tiles with a typical batch size of 8. The dataset is split into approximately 80%

training and 20% validation subsets. The Adam optimizer with a learning rate of 1×10−4 is employed, alongside
learning-rate scheduling and real-time visualization callbacks. Synthetic noise, star masks, and paired tile loading are
integrated into the tf.data pipeline using tf.py_function, combining flexibility with efficient prefetching.



3. Inference on Full-Resolution Images

Inference on full-resolution astrophotography frames is performed using an overlapping tile strategy. Let size denote
the tile size (256) and overlap_fraction the proportion of overlap (typically 0.2–0.3). The stride step and overlap are
computed as:

step = size · (1 − overlap_fraction),    overlap = size − step.

This guarantees that each pixel in the original image is covered by multiple overlapping tiles.

Tile Extraction. The image is scanned in a grid pattern, extracting overlapping 256×256 patches. For edge
regions, tiles are padded as needed so that every part of the image is processed.

Gaussian Weighting. For each tile, a two-dimensional Gaussian mask is generated, with maximum weight at the
tile center and decreasing weights towards the edges. After the denoising network processes a tile, its output is
multiplied by this mask.

Accumulation and Normalization. Two full-sized buffers are maintained: an accumulator for the sum of
weighted predictions, and a corresponding weight map for the sum of Gaussian weights at each pixel. The final
denoised image is obtained by:

final(x, y) = accumulator(x, y) / weight\_map(x, y).

This approach yields a seamless synthesis, eliminating visible seams and ensuring consistent predictions across the
field.

4. Results

4.1 Visual Quality Improvements
The proposed denoising framework was evaluated qualitatively on a wide range of deep-sky images, including
galaxies, star clusters, and emission or reflection regions. In all tested cases, the model successfully removed chroma
blotching, banding patterns, sensor-induced noise, and small-scale random grain while preserving:

stellar profiles and color integrity;
fine structures in faint astronomical objects;
global contrast and brightness relationships.

A side-by-side comparison between noisy inputs and denoised outputs reveals a clear reduction in random noise,
especially in uniform areas such as backgrounds and low-signal regions. Furthermore, the method maintains small
gradients and faint structures that are essential in astrophotography, avoiding the oversmoothing common in generic
denoisers.

Figure 2. Comparison of noisy input and denoised output.



4.2 Tiling Strategies: Overlap + Gaussian Weighting vs. Naïve Non-Overlapping Tiles
Two inference strategies were compared:

Naïve tiling (no overlap). In this strategy, the image is divided into 256×256 blocks, each processed
independently by the network and then placed back without blending. This approach leads to:

visible block boundaries, especially in smooth backgrounds;
regional inconsistencies due to local prediction biases in each tile;
grid-like artifacts that are clearly perceptible in the final image.

Overlap + Gaussian weighting (AstroPics Lab default). With overlapping tiles and Gaussian
feathering:

no visible tile boundaries are present in the final image;
predictions are consistent across tile borders;
fine structures that cross tile boundaries are reconstructed smoothly.

When comparing both approaches on the same frame, the non-overlapping variant exhibits obvious tiling artifacts,
while the overlapping method produces a uniform and coherent image. This confirms that the inference strategy
plays a key role in achieving high-quality denoising results.

Figure 3. Comparison between noisy image (left), non-overlapping tiling (middle), and overlapping tiles with Gaussian weighting
(right).

5. Conclusion

The denoising module developed for AstroPics Lab demonstrates strong performance in removing complex
astrophotographic noise while preserving stellar integrity and fine object structure. The combination of real paired
data from diverse imaging setups, synthetic astrophotography-inspired noise augmentation, a tailored ResUNet
architecture, star-aware and brightness-preserving loss functions, and overlapping-tile inference with Gaussian
weighting results in a robust denoising system suitable for galaxies, clusters, and a wide variety of deep-sky targets.

Although current results are highly encouraging, further improvements are planned. In particular, the training
dataset will be expanded to incorporate images from additional telescopes, sensors, and optical configurations. Each
camera model introduces characteristic noise patterns, and increasing dataset diversity will allow the system to
generalize across the broad landscape of amateur and semi-professional astrophotography equipment.

Future work will explore additional domain-specific augmentations, adaptive inference strategies, and extended
architectures. AstroPics Lab will continue to evolve with the goal of producing cleaner, more faithful, and
scientifically meaningful deep-sky images while keeping star fields and object morphology intact.


